ECN Electrical Forum - Discussion Forums for Electricians, Inspectors and Related Professionals
ECN Shout Chat
ShoutChat
Recent Posts
Increasing demand factors in residential
by gfretwell - 03/28/24 12:43 AM
Portable generator question
by Steve Miller - 03/19/24 08:50 PM
Do we need grounding?
by NORCAL - 03/19/24 05:11 PM
240V only in a home and NEC?
by dsk - 03/19/24 06:33 AM
Cordless Tools: The Obvious Question
by renosteinke - 03/14/24 08:05 PM
New in the Gallery:
This is a new one
This is a new one
by timmp, September 24
Few pics I found
Few pics I found
by timmp, August 15
Who's Online Now
1 members (gfretwell), 32 guests, and 14 robots.
Key: Admin, Global Mod, Mod
Previous Thread
Next Thread
Print Thread
Rate Thread
Page 1 of 2 1 2
#57824 10/21/05 11:43 AM
Joined: Jan 2005
Posts: 11
R
Member
how many volt amps is 4.0 kwa equal to?

#57825 10/21/05 11:59 AM
Joined: Dec 2004
Posts: 1,064
D
Member
What is a watt-amp?

#57826 10/21/05 12:06 PM
Joined: Jan 2005
Posts: 11
R
Member
Im sorry, that was a 4.0kw whats that equal to va?

#57827 10/21/05 12:18 PM
Joined: Dec 2004
Posts: 1,064
D
Member
Depends:

KW= 1000Watts
Watts= (I)X(E)
I=current
E=Voltage

So 4kw=4kva, but only in simple terms, it gets more involved when you factor in 3ph or PF.

Dnk....

[This message has been edited by Dnkldorf (edited 10-21-2005).]

[This message has been edited by Dnkldorf (edited 10-21-2005).]

#57828 10/21/05 04:09 PM
Joined: Sep 2003
Posts: 650
W
Member
Asking how many kVA = 4kW is almost meaningless.

It is like saying 'I just drove 4 miles. How many miles west did I go?' The question has meaning if you supply additional information.

In an AC circuit, both the voltage and the current continuously cycle from 0 to + to 0 to - and back again. The current will change at the same frequency as the voltage, but does not need to be perfectly in step with the voltage. However the _real power_ delivered to the load depends upon that portion of the current flowing that is exactly in step with the applied voltage. kVA is the raw product of voltage and current; kW is the real power delivered to the load. kW and kVA are equal if the voltage and current are perfectly in step.

kVA and kW are related by the 'power factor' of the load. kVA = kW/pf

When pf=1.0, then kVA = kW.

pf can never be greater than 1.0 .

Most (but not all) loads have pf > 0.7. So as a reasonable _guess_ you can say 'kVA will certainly be greater than or equal to kW, and probably be less than kW * 1.4 '

Some inductive loads can have pf that approaches 0, so without knowing the load pf, you can never be sure.

-Jon

#57829 10/21/05 08:45 PM
Joined: Mar 2005
Posts: 49
R
Member
If power factor is unknown or cannot be determined, it is common to assume pf=0.8.

So, for your case
kw = 4.0
kva = kw/pf = 4.0/0.8 = 5.0

Note, this assumes the circuit your dealing with is predominatly resistive & inductive. For a resistive & inductive circuit the power factor is termed a "lagging" power factor. On the other hand, if the circuit is predominately capacitive, power factor is termed a "leading" power factor.

Hope this sheds some electrons on the situation for you ;-)

Rich

#57830 10/21/05 09:21 PM
Joined: Sep 2005
Posts: 202
W
WFO Offline
Member
Maybe if you were a little more specific as to your project and what it involves, the responses here could be more meaningfull.

#57831 10/21/05 10:10 PM
Joined: Jan 2005
Posts: 5,445
Likes: 2
Cat Servant
Member
If we were using DC, or AC with onlt resistance loads (IE: simple light bulbs), a watt and a volt-amp would be the same thing.

Unfortunately, we don't live in that kind of world. Large motors, lots of motors, variable spped controls, electronics, all sorts of things we use distort the wave form...and can fool our meters into thinking we're using more electricity than we actually are.

For the most part, this difference is of interest only to engineers. Most of us can get by equating one watt to one volt-amp.

#57832 10/22/05 02:08 PM
Joined: Jun 2005
Posts: 821
S
Member
Reno, so is it safe to say then that volt-amps be considered only when computing loads for fluorescent lighting?

#57833 10/22/05 06:29 PM
Joined: Jan 2005
Posts: 5,445
Likes: 2
Cat Servant
Member
Now there's a trick question if there ever was one!

For fluorescent lighting calculations, you use the figure on the ballasts, rather than adding up light bulbs.
For traditional ballasts and when using T-12 lamps, yes, volt-amps can be treated as watts.
The same applies for any fluorescents on single-phase systems.

However- on some fixtures you will see a sticker warning you about sharing the neutral wire between different circuits. This sticker is a major clue that not only are the ballasts electronic- but that "harmonics" may be an issue. And, since with three phase systems no single leg can completely "cancel out" another, you will want to up-size the neutral, or run separate neutrals.

All fixtures using the narrower T-8 and T-5 lamps use electronic ballasts.

The explanation here as to "why" volt-amps and watts are not the same is that the distorted waveform can fool an amp meter into reading lower than the actual current being used.

Page 1 of 2 1 2

Link Copied to Clipboard
Powered by UBB.threads™ PHP Forum Software 7.7.5